Skip to main content
GET
https://sandbox.getcollate.io/api
/
v1
/
mlmodels
/
{id}
/
versions
GET /v1/mlmodels/{id}/versions
from metadata.sdk import configure
from metadata.sdk.entities import MLModels

configure(
    host="https://your-company.getcollate.io/api",
    jwt_token="your-jwt-token"
)

# List all versions
versions = MLModels.get_versions("6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2")
for v in versions:
    print(f"Version {v.version}: {v.description}")

# Get a specific version
model_v1 = MLModels.get_specific_version(
    "6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2",
    "0.1"
)
print(f"Original algorithm: {model_v1.algorithm}")
{
  "entityType": "mlmodel",
  "versions": [
    "{\"id\":\"6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2\",\"name\":\"customer_segmentation\",\"fullyQualifiedName\":\"mlflow_svc.customer_segmentation\",\"version\":0.2,\"description\":\"Updated: Customer segmentation using KMeans with 5 clusters\",\"algorithm\":\"KMeans\",\"serviceType\":\"Mlflow\"}",
    "{\"id\":\"6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2\",\"name\":\"customer_segmentation\",\"fullyQualifiedName\":\"mlflow_svc.customer_segmentation\",\"version\":0.1,\"algorithm\":\"KMeans\",\"serviceType\":\"Mlflow\"}"
  ]
}

ML Model Versions

Every change to an ML model entity creates a new version. Use these endpoints to view the version history and retrieve specific versions.

List Versions

id
string
required
UUID of the ML model.

Get Specific Version

Use GET /v1/mlmodels/{id}/versions/{version} to retrieve a specific version.
id
string
required
UUID of the ML model.
version
string
required
Version number to retrieve (e.g., 0.2).
GET /v1/mlmodels/{id}/versions
from metadata.sdk import configure
from metadata.sdk.entities import MLModels

configure(
    host="https://your-company.getcollate.io/api",
    jwt_token="your-jwt-token"
)

# List all versions
versions = MLModels.get_versions("6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2")
for v in versions:
    print(f"Version {v.version}: {v.description}")

# Get a specific version
model_v1 = MLModels.get_specific_version(
    "6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2",
    "0.1"
)
print(f"Original algorithm: {model_v1.algorithm}")
{
  "entityType": "mlmodel",
  "versions": [
    "{\"id\":\"6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2\",\"name\":\"customer_segmentation\",\"fullyQualifiedName\":\"mlflow_svc.customer_segmentation\",\"version\":0.2,\"description\":\"Updated: Customer segmentation using KMeans with 5 clusters\",\"algorithm\":\"KMeans\",\"serviceType\":\"Mlflow\"}",
    "{\"id\":\"6b04e1d8-b66d-4f78-ab21-beb5be2cf4f2\",\"name\":\"customer_segmentation\",\"fullyQualifiedName\":\"mlflow_svc.customer_segmentation\",\"version\":0.1,\"algorithm\":\"KMeans\",\"serviceType\":\"Mlflow\"}"
  ]
}

Returns

List versions returns an object with entityType and a versions array of serialized entity snapshots (newest first). Get specific version returns the full ML model object as it existed at that version.

Error Handling

CodeError TypeDescription
401UNAUTHORIZEDInvalid or missing authentication token
404NOT_FOUNDML model or version does not exist